Computational Methods in Systems Biology
The Computational Methods in Systems Biology helps to catalyze the convergence between computer scientists interested in language design, concurrency theory, software engineering or program verification, and physicists, mathematicians and biologists interested in the systems-level understanding of cellular processes. Systems biology was perceived as being increasingly in search of sophisticated modeling frameworks whether for representing and processing system level dynamics or for model analysis, comparison and refinement. The global market for computational biology is expected to reach USD 4,285.1 million by 2020 growing at a CAGR of 21.1%, according to a new study by Grand View Research, Inc. Steady increase in the usage & application of computational biology for bioinformatics R&D programs designed for sequencing genomes to better understand biological systems and increasing number of clinical studies in pharmaco genomics and pharmacokinetics for novel drug discovery studies are expected to drive computational biology demand over the next six years. North America was the largest regional market, accounting for 58.0% of the global revenue in 2013. Its large share is majorly attributed to the growing research investments and initiatives for development of drug discovery.
Related Conference of Computational Methods in Systems Biology
Computational Methods in Systems Biology Conference Speakers
Recommended Sessions
- Big Data Analytics & Database Management
- Bioinformatics Technologies in Medicine
- Computational Immunology & Drug Designing
- Computational Methods in Systems Biology
- Computational Systems Biology
- Evolutionary Bioinformatics
- Stitching Bioinformatics Approach to Pharmacy
- Structural Bioinformatics
- Systems Biology
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- Biochemistry - Glycobiology 2025 (Germany)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Evolution of Glycan Diversity - Glycobiology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene regulation and Cell Signalling - Structural Biology 2025 (Germany)
- Genomics and Metabolomics - Glycobiology 2025 (Germany)
- Glycans in Diseases and Therapeutics - Glycobiology 2025 (Germany)
- Glycans in Drug Design - Glycobiology 2025 (Germany)
- Glycan’s - Glycobiology 2025 (Germany)
- Glycobiology - Glycobiology 2025 (Germany)
- Glycochemistry - Glycobiology 2025 (Germany)
- Glycoimmunology - Glycobiology 2025 (Germany)
- Glycoinformatics - Glycobiology 2025 (Germany)
- Glycolipids and Glycopeptides - Glycobiology 2025 (Germany)
- Glyconeurobiology - Glycobiology 2025 (Germany)
- Glycopathology - Glycobiology 2025 (Germany)
- Glycosience - Glycobiology 2025 (Germany)
- Hybrid approaches in Structure prediction - Structural Biology 2025 (Germany)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular biology techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteoglycan and Sialic acid - Glycobiology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Recent Advances in Glycobiology - Glycobiology 2025 (Germany)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Synthesis and Biological Role of Glycans - Glycobiology 2025 (Germany)